A neural network approach to key frame extraction

نویسندگان

  • Rajesh Narasimha
  • Andreas E. Savakis
  • Raghuveer M. Rao
  • Ricardo L. de Queiroz
چکیده

We present a neural network based approach to key frame extraction in the compressed domain. The proposed method is an amalgamation of both the MPEG-7 descriptors namely motion intensity descriptor and spatial activity descriptor. Shot boundary detection and block motion estimation techniques are employed prior to the extraction of the descriptors. The motion intensity (“pace of action”) is obtained using a fuzzy system that classifies the motion intensity into five categories proportional to the intensity. The spatial activity matrix determines the spatial distribution of activity (“active regions”) in a frame. A neural network is used to pick those frames as key frames which have high intensity and maximum spatial activity at the center of the frame. Results are compared against two well-known key frame extraction techniques to demonstrate the advantage and robustness of the proposed approach. Results show that the neural network approach performs much better than selecting first frame of the shot as a key frame and selecting middle frame of the shot as a key frame methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extraction of Influencing Indicators for Scoring of Insurance Companies Branches Based on GMDH Neural Network

O ne of the key topics and the most important tools to determine the strengths, weaknesses, opportunities and threats of each organization and company is the evaluation the performance of organizational activities that rating and ranking follows the internal and external goals. In this regard insurance companies similarly are looking for evaluation of their branches through scoring, ...

متن کامل

Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network

In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as  amount  of  flow  intensity  ratio,  temperature,  residence  time,  and  pH  are  used  as  input  variables  of  the network,  whereas  the  extraction  yield  is  considere...

متن کامل

Relevance Feedback for Content-based Retrieval in Video Databases: a Neural Network Approach

A neural network scheme is presented in this paper for adaptive video indexing and retrieval. First, a limited but characteristic amount of frames are extracted from each video scene, able for providing an efficient representation of the video content. For this reason, a cross correlation criterion is minimized using a genetic algorithm. Low level features are extracted to indicate the frame ch...

متن کامل

Scene Text Area Detection from Video

Text detection from videos is a well known research area. Especially the detection of static superimposed text such as captions has been researched successfully, but makes many assumptions that question the applicability of those algorithms for moving scene text. In this dissertation, I propose a scene text area detection approach that includes a simple key frame extraction, feature extraction,...

متن کامل

Prediction of Energy Consumption in the First Line of Tehran Metro: GMDH Neural Network Approach

Today, energy and its consumption are the main strategic plan of organizations and also the development of urban transport systems by considering a variety of economic, scientific, industrial, climate and growing urbanization is essential. Analysis of past trends in energy is the key to predict future trends, with regard to the rate of development of metro, for planning and future-oriented macr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004