A neural network approach to key frame extraction
نویسندگان
چکیده
We present a neural network based approach to key frame extraction in the compressed domain. The proposed method is an amalgamation of both the MPEG-7 descriptors namely motion intensity descriptor and spatial activity descriptor. Shot boundary detection and block motion estimation techniques are employed prior to the extraction of the descriptors. The motion intensity (“pace of action”) is obtained using a fuzzy system that classifies the motion intensity into five categories proportional to the intensity. The spatial activity matrix determines the spatial distribution of activity (“active regions”) in a frame. A neural network is used to pick those frames as key frames which have high intensity and maximum spatial activity at the center of the frame. Results are compared against two well-known key frame extraction techniques to demonstrate the advantage and robustness of the proposed approach. Results show that the neural network approach performs much better than selecting first frame of the shot as a key frame and selecting middle frame of the shot as a key frame methods.
منابع مشابه
The Extraction of Influencing Indicators for Scoring of Insurance Companies Branches Based on GMDH Neural Network
O ne of the key topics and the most important tools to determine the strengths, weaknesses, opportunities and threats of each organization and company is the evaluation the performance of organizational activities that rating and ranking follows the internal and external goals. In this regard insurance companies similarly are looking for evaluation of their branches through scoring, ...
متن کاملOptimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملRelevance Feedback for Content-based Retrieval in Video Databases: a Neural Network Approach
A neural network scheme is presented in this paper for adaptive video indexing and retrieval. First, a limited but characteristic amount of frames are extracted from each video scene, able for providing an efficient representation of the video content. For this reason, a cross correlation criterion is minimized using a genetic algorithm. Low level features are extracted to indicate the frame ch...
متن کاملScene Text Area Detection from Video
Text detection from videos is a well known research area. Especially the detection of static superimposed text such as captions has been researched successfully, but makes many assumptions that question the applicability of those algorithms for moving scene text. In this dissertation, I propose a scene text area detection approach that includes a simple key frame extraction, feature extraction,...
متن کاملPrediction of Energy Consumption in the First Line of Tehran Metro: GMDH Neural Network Approach
Today, energy and its consumption are the main strategic plan of organizations and also the development of urban transport systems by considering a variety of economic, scientific, industrial, climate and growing urbanization is essential. Analysis of past trends in energy is the key to predict future trends, with regard to the rate of development of metro, for planning and future-oriented macr...
متن کامل